CLICK HERE FOR BLOGGER TEMPLATES AND MYSPACE LAYOUTS »

Selasa, Desember 23, 2008

DNA

Wikipedia ada ketika Anda membutuhkannya — sekarang ia membutuhkan Anda.
Dukung Wikipedia: sebuah proyek nirlaba.
Dukung Wikipedia: sebuah proyek nirlaba. — Menyumbang

Replikasi DNA

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Langsung ke: navigasi, cari
Halaman ini belum atau baru diterjemahkan sebagian dari bahasa Inggris.
Bantulah Wikipedia untuk melanjutkannya. Lihat panduan penerjemahan Wikipedia.
Replikasi DNA bersifat semikonservatif, yaitu kedua untai tunggal DNA bertindak sebagai cetakan untuk pembuatan untai-untai DNA baru; seluruh untai tunggal cetakan dipertahankan dan untai yang baru dibuat dari nukleotida-nukleotida.

Replikasi DNA adalah proses penggandaan molekul DNA untai ganda. Pada sel, replikasi DNA terjadi sebelum pembelahan sel. Prokariota terus-menerus melakukan replikasi DNA. Pada eukariota, waktu terjadinya replikasi DNA sangatlah diatur, yaitu pada fase S daur sel, sebelum mitosis atau meiosis I. Penggandaan tersebut memanfaatkan enzim DNA polimerase yang membantu pembentukan ikatan antara nukleotida-nukleotida penyusun polimer DNA. Proses replikasi DNA dapat pula dilakukan in vitro dalam proses yang disebut reaksi berantai polimerase (PCR).

Daftar isi

[sembunyikan]

[sunting] Garpu replikasi

Garpu replikasi atau cabang replikasi (replication fork) ialah struktur yang terbentuk ketika DNA bereplikasi. Garpu replikasi ini dibentuk akibat enzim helikase yang memutus ikatan-ikatan hidrogen yang menyatukan kedua untaian DNA, membuat terbukanya untaian ganda tersebut menjadi dua cabang yang masing-masing terdiri dari sebuah untaian tunggal DNA. Masing-masing cabang tersebut menjadi "cetakan" untuk pembentukan dua untaian DNA baru berdasarkan urutan nukleotida komplementernya. DNA polimerase membentuk untaian DNA baru dengan memperpanjang oligonukleotida (RNA) yang dibentuk oleh enzim primase dan disebut primer.

DNA polimerase membentuk untaian DNA baru dengan menambahkan nukleotida—dalam hal ini, deoksiribonukleotida—ke ujung 3'-hidroksil bebas nukleotida rantai DNA yang sedang tumbuh. Dengan kata lain, rantai DNA baru (DNA "anak") disintesis dari arah 5'→3', sedangkan DNA polimerase bergerak pada DNA "induk" dengan arah 3'→5'. Namun demikian, salah satu untaian DNA induk pada garpu replikasi berorientasi 3'→5', sementara untaian lainnya berorientasi 5'→3', dan helikase bergerak membuka untaian rangkap DNA dengan arah 5'→3'. Oleh karena itu, replikasi harus berlangsung pada kedua arah berlawanan tersebut.

Replikasi DNA. Mula-mula, heliks ganda DNA (merah) dibuka menjadi dua untai tunggal oleh enzim helikase (9) dengan bantuan topoisomerase (11) yang mengurangi tegangan untai DNA. Untaian DNA tunggal dilekati oleh protein-protein pengikat untaian tunggal (10) untuk mencegahnya membentuk heliks ganda kembali. Primase (6) membentuk oligonukleotida RNA yang disebut primer (5) dan molekul DNA polimerase (3 & 8) melekat pada seuntai tunggal DNA dan bergerak sepanjang untai tersebut memperpanjang primer, membentuk untaian tunggal DNA baru yang disebut leading strand (2) dan lagging strandlagging strand harus mensintesis segmen-segmen polinukleotida diskontinu (disebut fragmen Okazaki (7)). Enzim DNA ligase (4) kemudian menyambungkan potongan-potongan lagging strand tersebut. (1). DNA polimerase yang membentuk

[sunting] Pembentukan leading strand

Pada replikasi DNA, untaian pengawal (leading strand) ialah untaian DNA yang disintesis dengan arah 5'→3' secara berkesinambungan. Pada untaian ini, DNA polimerase mampu membentuk DNA menggunakan ujung 3'-OH bebas dari sebuah primer RNA dan sintesis DNA berlangsung secara berkesinambungan, searah dengan arah pergerakan garpu replikasi.

[sunting] Pembentukan lagging strand

Lagging strand ialah untaian DNA yang terletak pada sisi yang berseberangan dengan leading strand pada garpu replikasi. Untaian ini disintesis dalam segmen-segmen yang disebut fragmen Okazaki. Pada untaian ini, primase membentuk primer RNA. DNA polimerase dengan demikian dapat menggunakan gugus OH 3' bebas pada primer RNA tersebut untuk mensintesis DNA dengan arah 5'→3'. Fragmen primer RNA tersebut lalu disingkirkan (misalnya dengan RNase H dan DNA Polimerase I) dan deoksiribonukleotida baru ditambahkan untuk mengisi celah yang tadinya ditempati oleh RNA. DNA ligase lalu menyambungkan fragmen-fragmen Okazaki tersebut sehingga sintesis lagging strand menjadi lengkap.

[sunting] Dynamics at the replication fork

Recent evidence suggests that the enzymes and proteins involved in DNA replication remain stationary at the replication forks while DNA is looped out to maintain bidirectionality in observed in replication. This is a result of an interaction between DNA polymerase, the sliding clamp, and the clamp loader.

The sliding clamp in all domains of life share a similar structure, and are able to interact with the various processive and non-processive DNA polymerases found in cells. In addition, the sliding clamp serves as a processivity factor. The C-terminal end of the clamps forms loops which are able to interact with other proteins involved in DNA replication (such as DNA polymerase and the clamp loader). The inner face of the clamp allows DNA to be threaded through it. The sliding clamp forms no specific interactions with DNA. There is a large 35A hole in the middle of the clamp. This allows DNA to fit through it, and water to take up the rest of the space allowing the clamp to slide along the DNA. Once the polymerase reaches the end of the template or detects double stranded DNA (see below), the sliding clamp undergoes a conformational change which releases the DNA polymerase.

The clamp loader, a multisubunit protein, is able to bind to the sliding clamp and DNA polymerase. When ATP is hydrolyzed, it loses affinity for the sliding clamp allowing DNA polymerase to bind to it. Furthermore, the sliding clamp can only be bound to a polymerase as long as single stranded DNA is being synthesized. Once ssDNA runs out, the polymerase is able to bind to the a subunit on the clamp loader and move to a new position on the lagging strand. On the leading strand, DNA polymerase III associates with the clamp loader and is bound to the sliding clamp.

[sunting] Replikasi di prokariota dan eukariota

Bagian ini membutuhkan pengembangan

[sunting] Pengaturan replikasi

Bagian ini membutuhkan pengembangan

[sunting] Lihat pula


0 komentar: